Math, asked by abhi1239948, 11 months ago

Sin[2arc cos 12/13]​

Answers

Answered by AbhijithPrakash
7

Answer:

\displaystyle\sin \left(2\arccos \left(\frac{12}{13}\right)\right)=\frac{120}{169}\quad \begin{pmatrix}\mathrm{Decimal:}&0.71005\dots \end{pmatrix}

Step-by-step explanation:

\displaystyle\sin \left(2\arccos \left(\frac{12}{13}\right)\right)

\gray{\mathrm{Use\:the\:following\:identity}:\quad \sin \left(2x\right)=2\cos \left(x\right)\sin \left(x\right)}

\displaystyle\gray{\sin \left(2\arccos \left(\frac{12}{13}\right)\right)=2\cos \left(\arccos \left(\frac{12}{13}\right)\right)\sin \left(\arccos \left(\frac{12}{13}\right)\right)}

\displaystyle=2\cos \left(\arccos \left(\frac{12}{13}\right)\right)\sin \left(\arccos \left(\frac{12}{13}\right)\right)

\gray{\mathrm{Use\:the\:following\:identity:}\:\cos \left(\arccos \left(x\right)\right)=x}

\displaystyle=2\left(\frac{12}{13}\right)\sin \left(\arccos \left(\frac{12}{13}\right)\right)

\gray{\mathrm{Use\:the\:following\:identity:}\:\sin \left(\arccos \left(x\right)\right)=\sqrt{1-x^2}}

\displaystyle=2\left(\frac{12}{13}\right)\sqrt{1-\left(\frac{12}{13}\right)^2}

\displaystyle\blue{2\left(\frac{12}{13}\right)\sqrt{1-\left(\frac{12}{13}\right)^2}}

\displaystyle\gray{\mathrm{Remove\:parentheses}:\quad \left(a\right)=a}

\displaystyle=2\cdot \frac{12}{13}\sqrt{1-\left(\frac{12}{13}\right)^2}

\displaystyle\gray{\sqrt{1-\left(\frac{12}{13}\right)^2}=\frac{5}{13}}

\displaystyle=2\cdot \frac{5}{13}\cdot \frac{12}{13}

\displaystyle\gray{\mathrm{Multiply\:fractions}:\quad \:a\cdot \frac{b}{c}\cdot \frac{d}{e}=\frac{a\:\cdot \:b\:\cdot \:d}{c\:\cdot \:e}}

\displaystyle=\frac{12\cdot \:5\cdot \:2}{13\cdot \:13}

\gray{\mathrm{Multiply\:the\:numbers:}\:12\cdot \:5\cdot \:2=120}

\displaystyle=\frac{120}{13\cdot \:13}

\gray{\mathrm{Multiply\:the\:numbers:}\:13\cdot \:13=169}

\displaystyle=\frac{120}{169}

Similar questions