Math, asked by mouryaani0, 4 months ago

sin^2theta/sin theta = sin theta/1–cos theta​

Answers

Answered by Sankalp050
5

Answer:

माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐माता जी卐

Answered by Anonymous
6

Step-by-step explanation:

Question : Prove that√5 is irrational.

Answer :

Let us assume that √5 is a rational number.

Sp it t can be expressed in the form p/q where p,q are co-prime integers and q≠0

⇒√5=p/q

On squaring both the sides we get,

⇒5=p²/q²

⇒5q²=p² —————–(i)

p²/5= q²

So 5 divides p

p is a multiple of 5

⇒p=5m

⇒p²=25m² ————-(ii)

From equations (i) and (ii), we get,

5q²=25m²

⇒q²=5m²

⇒q² is a multiple of 5

⇒q is a multiple of 5

Hence, p,q have a common factor 5. This contradicts our assumption that they are co-primes. Therefore, p/q is not a rational number

√5 is an irrational number

Hence proved

Similar questions