Sin^2x+sin^2(60+x)+sin^2(60-x)
Answers
Step-by-step explanation:
Given:-
Sin^2x+Sin^2(60°+x)+Sin^2(60°-x)
To find:-
Find the value of Sin^2x+Sin^2(60°+x)+Sin^2(60°-x)
Solution:-
Given expression is
Sin^2x+Sin^2(60°+x)+Sin^2(60°-x)
It can be written as
Sin^2 x + [Sin(60°+x)]^2+[Sin(60°-x)]^2
We know that
Sin (A+B)= Sin A Cos B + Cos A Sin B
Sin (A-B)= Sin A Cos B - Cos A Sin B
Where A = 60° and B= x
Sin (60°+x)
=> Sin 60° Cos x + Cos 60° Sin x
=> (√3/2) Cos x + (1/2) Sin x
=> (√3 Cos x + Sin x)/2
[Sin (60+x)]^2
=> [(√3 Cos x + Sin x)/2]^2
[(√3Cosx)^2+2(√3Cosx)(Sinx)+(Sinx)^2]/4
=> [3Cos^2 x+2√3 SinxCosx+Sin^2 x ]/4
and
Sin (60°-x)
=> Sin 60° Cos x - Cos 60° Sin x
=> (√3/2) Cos x - (1/2) Sin x
=> (√3 Cos x - Sin x)/2
[Sin (60-x)]^2
=> [(√3 Cos x - Sin x)/2]^2
[(√3Cosx)^2-2(√3Cosx)(Sinx)+(Sinx)^2]/4
[3Cos^2 x-2√3SinxCosx+Sin^2 x ]/4
Now ,
Sin^2(60+x) + Sin^2 (60-x)
=>(3Cos^2 x+2√3Sinx Cos x + Sin^2 x)/4 +
( 3 Cos^2 x -2√3 Sin x Cos x + Sin^2 x )/4
=>( 6 Cos^2 x + 2 Sin^2 x)/4
=>(3Cos^2 x + Sin^2 x)/2
Now ,
Sin^2x+Sin^2(60+x)+Sin^2(60-x)
=> Sin^2 x + (3Cos^2 x + Sin^2 x)/2
=> (2 Sin^2 x + 3 Cos^2 x+Sin^2 x)/2
=>( 3 Sin^2 x+ 3 Cos^2 x )/2
We know that
Sin^2 A + Cos^2 A = 1
=> [3(1)]/2
=> 3/2
Answer:-
The value of Sin^2x+Sin^2(60°+x)+Sin^2(60°-x) is
3/2
Used formulae:-
- Sin (A+B)= Sin A Cos B + Cos A Sin B
- Sin (A-B)= Sin A Cos B - Cos A Sin B
- Sin^2 A + Cos^2 A = 1
- Sin 60°=√3/2
- Cos 60°=1/2