Math, asked by bhumireddynagmailcom, 2 months ago

sin 2x - sin 3x = 0 ,find general solutions​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:sin2x - sin3x = 0

can be rewritten as

\rm :\longmapsto\:sin3x - sin2x = 0

We know,

 \boxed{ \sf \: sinx - siny = 2cos\bigg(\dfrac{x + y}{2} \bigg)sin\bigg(\dfrac{x - y}{2} \bigg)}

So, using this identity we get

\rm :\longmapsto\:2cos\bigg(\dfrac{3x + 2x}{2} \bigg)sin\bigg(\dfrac{3x - 2x}{2} \bigg) = 0

\rm :\longmapsto\:cos\bigg(\dfrac{5x}{2} \bigg)sin\bigg(\dfrac{x}{2} \bigg) = 0

\rm :\implies\:cos\bigg(\dfrac{5x}{2} \bigg) = 0 \:  \:  \: or \:  \:  \:  \: sin\bigg(\dfrac{x}{2} \bigg) = 0

\rm :\implies\:\dfrac{5x}{2} = (2n + 1)\dfrac{\pi}{2} \:  \:  \: or \:\dfrac{x}{2}  = n\pi \:  \: where \: n \in \: Z

 \{ \because \:  \sf \: cosx = 0 \implies \: x = (2n + 1)\dfrac{\pi}{2}  \:\}  \:  \:  \:  \:  \:  \: \\  \{ \sf \because \: sinx = 0 \implies \: x = n\pi \: where \: n \in \: Z \}

\rm \implies\:x = (2n + 1)\dfrac{\pi}{5} \:  \:  \: or \:x  = 2n\pi \:  \: where \: n \in \: Z

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi \\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\\ \\ \sf tanx = 0 & \sf x = n\pi\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\\ \\ \sf tanx = tany & \sf x = n\pi + y \end{array}} \\ \end{gathered}\end{gathered}

\: \: \rm \: \: \: \: \: \: \: \: \: \: \: \bull \: \: \: \: \: \: where \: n \in \: Z

Similar questions