Sin ' 3/5 +sin 8/17 = COS'36/85
Answers
EXPLANATION.
⇒ sin⁻¹(3/5) + sin⁻¹(8/17) = cos⁻¹(36/85).
As we know that,
Formula of :
⇒ cosθ = √1 - sin²θ.
Using this formula in equation, we get.
⇒ sin⁻¹(3/5) = x.
⇒ sin⁻¹(8/17) = y.
⇒ cos x = √1 - sin²x.
⇒ cos x = √1 - (3/5)².
⇒ cos x = √1 - 9/25.
⇒ cos x = √25 - 9/25.
⇒ cos x = √16/25.
⇒ cos x = 4/5.
⇒ cos y = √1 - sin²y.
⇒ cos y = √1 - (8/17)².
⇒ cos y = √1 - 64/289.
⇒ cos y = √289 - 64/289.
⇒ cos y = √225/289.
⇒ cos y = 15/17.
As we know that,
Formula of :
⇒ cos(x + y) = cos(x).cos(y) - sin(x).sin(y).
Using this formula in equation, we get.
⇒ cos(x + y) = 4/5 x 15/17 - 3/5 x 8/17.
⇒ cos(x + y) = 60/85 - 24/85.
⇒ cos(x + y) = 36/85.
⇒ x + y = cos⁻¹(36/85).
Put the value of x and y in equation, we get.
⇒ sin⁻¹(3/5) + sin⁻¹(8/17) = cos⁻¹(36/85).
MORE INFORMATION.
Properties.
(1) = sin⁻¹x + cos⁻¹x = π/2.
(2) = tan⁻¹x + cot⁻¹x = π/2.
(3) = sec⁻¹x + cosec⁻¹x = π/2.
⇒ sin⁻¹(3/5) + sin⁻¹(8/17) = cos⁻¹(36/85).
As we know that,
Formula of :
⇒ cosθ = √1 - sin²θ.
Using this formula in equation, we get.
⇒ sin⁻¹(3/5) = x.
⇒ sin⁻¹(8/17) = y.
⇒ cos x = √1 - sin²x.
⇒ cos x = √1 - (3/5)².
⇒ cos x = √1 - 9/25.
⇒ cos x = √25 - 9/25.
⇒ cos x = √16/25.
⇒ cos x = 4/5.
⇒ cos y = √1 - sin²y.
⇒ cos y = √1 - (8/17)².
⇒ cos y = √1 - 64/289.
⇒ cos y = √289 - 64/289.
⇒ cos y = √225/289.
⇒ cos y = 15/17.
As we know that,
Formula of :
⇒ cos(x + y) = cos(x).cos(y) - sin(x).sin(y).
Using this formula in equation, we get.
⇒ cos(x + y) = 4/5 x 15/17 - 3/5 x 8/17.
⇒ cos(x + y) = 60/85 - 24/85.
⇒ cos(x + y) = 36/85.
⇒ x + y = cos⁻¹(36/85).
Put the value of x and y in equation, we get.
⇒ sin⁻¹(3/5) + sin⁻¹(8/17) = cos⁻¹(36/85).
MORE INFORMATION.
Properties.
(1) = sin⁻¹x + cos⁻¹x = π/2.
(2) = tan⁻¹x + cot⁻¹x = π/2.
(3) = sec⁻¹x + cosec⁻¹x = π/2.
_______________________________________________________________