Math, asked by aasha1537, 4 days ago

Sin*30°-tan*-60°+cosec*60°+6sec*45°÷cosec90°+cos60°-tan*45°

Answers

Answered by hotelcalifornia
0

Step-by-step explanation:

Given:

sin^230° -tan^260° +cosec^260° +\frac{6sec^245^0}{cosec90^0}+cos60° -tan^245°

To find:

The value of sin^230° -tan^260° +cosec^260° +\frac{6sec^245^0}{cosec90^0} +cos60° -tan^245°

Solution:

Given that,

sin^230° -tan^260° +cosec^290° +\frac{6sec^245^0}{cosec90^0} +cos60° -tan^245°

Using the trigonometric table values,

(\frac{1}{\sqrt{2} })^2-(\sqrt{3})^2+(\frac{2}{\sqrt{3} })^2+ \frac{6(\sqrt{2})^2 }{1}+ \frac{1}{2} -(1)^2

\frac{1}{4}-3 +\frac{4}{3}+12 +\frac{1}{2} -1

Add the whole numbers first,

\frac{1}{4} +\frac{4}{3} +\frac{1}{2} +8    

Find the LCD (Least Common Denominator) of \frac{1}{4},\frac{4}{3},\frac{1}{2}.

LCD=12

Make the denominators the same as the LCD.

\frac{3}{12} +\frac{16}{12}+\frac{6}{12} +8 × \frac{12}{12}

simplify the denominator are now the same,

\frac{3}{12} +\frac{16}{12} +\frac{6}{12} +\frac{96}{12}

Now join the denominators,

\frac{3+16+6+96}{12}

\frac{121}{12}

Convert to the mixed fraction and we get,

10\frac{1}{2}

Answer:

Hence the value of the given expression is \frac{121}{12}.

Similar questions