Math, asked by ruthika18, 1 year ago

(sin^3A+sin3A/sinA)+(cos^3A-cos3A/cosA)​


ruthika18: tq u bro
ruthika18: can I ask u one more
chaitanya92518: okay
ruthika18: I have posted
ruthika18: u ans me bro

Answers

Answered by chaitanya92518
11

Answer:

3

Step-by-step explanation:

\frac{sin^{3}A +sin3A}{sinA}+\frac{cos^{3}A-cos3A }{cosA}\\

sin3A can be written as

sin(2A+A) = sin2AcosA+cos2AsinA     ∵sin(A+B)=sinAcosB+cosAsinB

cos3A can be written as

cos(2A+A)=cos2AcosA-sin2AsinA       ∵cos(A+B)=cosAcosB-sinAsinB

so given equation can be written as

\frac{sin^{3}A+sin2AcosA+cos2AsinA }{sinA}+\frac{cos^{3} A-(cos2AcosA-sin2AsinA)}{cosA}

=\frac{sin^{3}A }{sinA}+\frac{sin2AcosA}{sinA} +\frac{cos2AsinA}{sinA} +\frac{cos^{3}A }{cosA}- \frac{cos2AcosA}{cosA} +\frac{sin2AsinA}{cosA}

we know that sin2A=2sinAcosA so the above equation becomes

=sin^{2}A+cos^{2}A+\frac{2sinAcosAcosA}{sinA}+cos2A-cos2A+\frac{2sinAcosAsinA}{cosA}

= 1+ 2cos²A+2sin²A

= 1+2(sin²A+cos²A)

=3                                                                  ∵sin²A+cos²A=1


ruthika18: tq
Answered by payalchatterje
0

Answer:

Required value of the given term is 3.

Step-by-step explanation:

Given,

 \frac{ {sin}^{3}A +  \sin(3A)  }{ \sin(A) }  +  \frac{ {sin}^{3}A -  \cos(3A)  }{cosA} ......(1)

We know,

sin3A =  \sin(2A + A)  =  \sin(2A)  \cos(A)  +  \sin(2A)  \sin(A)

Again

 \cos(3A)  =  \cos(2A +A )  =  \cos(2A)  \cos(A)  -  \sin(2A)  \sin(A)

Now from (1),

 \frac{ {sin}^{3}A +  \sin(2A)  \cos(A)   +  \cos(2A)  \sin(A) }{ \sin(A) }  +  \frac{ { \cos}^{3}A -  \cos(2A) \cos(A)  +  \sin(2A)  \sin(A) }{ \cos(A) }

We are separating every term,

 =  \frac{ { \sin}^{3}A }{ \sin(A) }  +  \frac{ \sin(2A)  \cos(A) }{ \sin(A) }  +  \frac{ \cos(2A) \sin(A)  }{ \sin(A) }  +  \frac{ {cos}^{3} A }{ \cos(A) }  -  \frac{ \cos(2A \cos(A) ) }{ \cot(A) }  +  \frac{ \sin(2A) \sin(A)  }{ \cos(A) }

 =  {sin}^{2} A +  {cos}^{2} A +  \frac{2 \sin(A) \cos(A) \cos(A)   }{ \sin(A) }  \cos(2A)  -  \cos(2A)  +  \frac{2 \sin(A)  \cos(A)  \sin(A) }{ \cos(A) }

 = 1 + 2 {cos}^{2} A + 2 {sin}^{2} A

 = 1 + 2 = 3

Here applied formulas,

sin(x + y) =  \sin(x)  \cos(y)  +  \sin(y) \cos(x)

 \cos(x + y)  =  \cos(x)  \cos(y)  -  \sin(x)  \sin(y)

 \sin(2x)  = 2 \sin(x)  \cos(x)

 {sin}^{2} x +  {cos}^{2} x = 1

Similar questions