Math, asked by kash16, 1 year ago

sin^4 x + cos^4 x = 1÷2 (1 + 2a^2 + a^4) where a = sin x + cos x

Answers

Answered by saurabhsemalti
1

( \sin(x)  +  \cos(x) ) {}^{2}  =  {sin}^{2}x +  {cos}^{2}  x+ 2sinxcosx \\  {a}^{2}  = 1 + sin2x \\ sin2x =  {a}^{2}  - 1..............(1) \\ now \\ ( {sin}^{2} x +  {cos}^{2} x) {}^{2}  =  {sin}^{4} x +  {cos}^{4} x + 2 {sin}^{2} x {cos}^{2} x \\  {1}^{2}  =  {sin}^{4} x +  {cos}^{4} x + (1 \div 2) {(sin2x)}^{2}  \\  {sin}^{4} x +  {cos}^{4}  = 1 - (1 \div 2)( {a}^{2}  - 1) {}^{2} ...(from(1)) \\
here it is proved.... mark it brainliest if helped
Similar questions