Math, asked by ahmadsafeer0987, 2 months ago

sin 45° cos30° + cos 45° sin 30°​

Answers

Answered by sriyutsuman
4

Answer:

I HOPE it will help you

Step-by-step explanation:

Sin 45°=1/√2

Cos45°=1/√2

sin30°=1/2

Cos30°=√3/2

Therefore

=Sin45°×cos30°+cos45°×sin30°

=1\√2 × √3\2 + 1\√2 × 1\2

=√3\2√2 + 1\2√2

=√3 +1\2√2

Therefore answer is √3+1\2√2

Answered by malavikashaji23
2

Answer:

 \sin(45)  =  \frac{1}{ \sqrt{2} }

 \cos(30 ) =  \frac{ \sqrt{3} }{2}

 \cos(45)  =  \frac{1}{ \sqrt{2} }

 \sin(30)  =  \frac{1}{2}

on \: substituting \: the \: values \:  \\  we \: get

 \frac{1}{ \sqrt{2} } . \frac{1}{2}  +  \frac{1}{ \sqrt{2} } . \frac{ \sqrt{3} }{2}

 \frac{1}{ \sqrt{2} } .   \frac{ \sqrt{3} }{ \sqrt[2]{2} }   =  \frac{ \sqrt{3 }  + 1}{ \sqrt[2]{2} }

therefore \: the \: answer \: is \:  \frac{ \sqrt{3}  + 1}{ \sqrt[2]{2} }

Similar questions