sin? 45° + cosec230°-cos60° +tan? 60°
sin2 30° +cos260° + sec2 45°
Answers
Answer:
-2
Explanation:
cosec2 30 sin2 45-sec2 60
\begin{lgathered}Cosec^230 Sin^245 - Sec^260\\\\Cosec = \frac{1}{Sin} \:\&\: Sec =\frac{1}{Cos} \\\\=\frac{1}{Sin^230} \times Sin^245 - \frac{1}{Cos^260} \\\\Cos\theta = Sin(90-\theta) \implies Cos60 = Sin30\\\\ = \frac{1}{Sin^230} \times Sin^245 - \frac{1}{Sin^230}\\\\= \frac{1}{Sin^230} \times (Sin^245 - 1)\\\\Sin30 = \frac{1}{2}\:\: \& \:Sin45 = \frac{1}{\sqrt{2}} \\\\= \frac{1}{(\frac{1}{2})^2} \times((\frac{1}{\sqrt{2}})^2 - 1 )\\\\= 4 \times (\frac{1}{2} -1)\\\\= 4\times(-\frac{1}{2} )\\\\= -2\end{lgathered}
Cosec
2
30Sin
2
45−Sec
2
60
Cosec=
Sin
1
&Sec=
Cos
1
=
Sin
2
30
1
×Sin
2
45−
Cos
2
60
1
Cosθ=Sin(90−θ)⟹Cos60=Sin30
=
Sin
2
30
1
×Sin
2
45−
Sin
2
30
1
=
Sin
2
30
1
×(Sin
2
45−1)
Sin30=
2
1
&Sin45=
2
1
=
(
2
1
)
2
1
×((
2
1
)
2
−1)
=4×(
2
1
−1)
=4×(−
2
1
)
=−2