(sin^4Q - cos^4Q + 1) cosec^2Q = 2
Answers
Answered by
39
||✪✪ QUESTION ✪✪||
Prove that (sin^4A -cos^4A +1)cosec^2A = 2 . ?
|| ✰✰ ANSWER ✰✰ ||
Taking LHS, we get,
→ (sin⁴A- cos⁴A + 1)cosec²A
→ [(sin²A)²-(cos²A)² + 1)cosec²A
using (a² - b²) = (a+b)(a-b) now,
→ [ (sin²A+cos²A)(sin²A-cos²A) + 1]cosec²A
Putting Sin²A + cos²A = 1 now,
→ (sin²A - cos²A + 1)cosec²A
→ [ sin²A + (1 - cos²A) ]cosec²A
Putting (1 - cos²A) = sin²A now,
→ [ sin²A + sin²A ] cosec²A
→ 2sin²A * cosec²A
Putting cosecA = 1/sinA now,
→ 2 * sin²A * 1/sin²A
→ 2 = RHS.
✪✪ Hence Proved ✪✪
Answered by
83
Step-by-step explanation:
Please check the attached picture:)
Attachments:
Similar questions