sin 50 cos 85 = (1 - √2 sin 35)/2√2
Answers
Answer:
proved
Step-by-step explanation:
Given sin 50 cos 85 or we can take as
cos 85 sin 50 multiply and divide by 2
So 1 /2 x 2 sin 50 cos 85
We have the formula 2 cos A sin B = sin(A + B) - sin (A - B)
50 + 85 = 135 and 85 - 50 = 35
1 / 2 ( sin 135 - sin 35)
1 / 2(sin (90 + 45) - sin 35
sin(90 + a) = cos a
1/2 (cos 45 - sin 35)
1/2 (1 /√2 - sin 35)
1/2 (1 - √2 sin 35) /2√2 (proved)
Answer:
Step-by-step explanation:
Given sin 50 cos 85 or we can take as
cos 85 sin 50 multiply and divide by 2
So 1 /2 x 2 sin 50 cos 85
We have the formula 2 cos A sin B = sin(A + B) - sin (A - B)
50 + 85 = 135 and 85 - 50 = 35
1 / 2 ( sin 135 - sin 35)
1 / 2(sin (90 + 45) - sin 35
sin(90 + a) = cos a
1/2 (cos 45 - sin 35)
1/2 (1 /√2 - sin 35)
1/2 (1 - √2 sin 35) /2√2
Hope it helps