sin 6 theta + cos 6 theta + 3 sin 2 theta cos 2 theta is equal to 1
Answers
Answered by
1
Step-by-step explanation:
ANSWER
sin
6
θ+cos
6
θ+3sin
2
θcos
2
θ
⇒LHS=(sin
2
θ)
3
+(cos
2
θ)
3
+3sin
2
θcos
2
θ
Using, [a
3
+b
3
=(a+b)
3
−3ab(a+b)]
⇒LHS=(sin
2
θ+cos
2
θ)
3
−3sin
2
θcos
2
θ(sin
2
θ+cos
2
θ)
3
+3sin
2
θcos
2
θ
⇒LHS=1−3sin
2
θcos
2
θ+3sin
2
θcos
2
θ=1=RHS
Answered by
0
Answer:
Step-by-step explanation:
ANSWER
sin
6
θ+cos
6
θ+3sin
2
θcos
2
θ
⇒LHS=(sin
2
θ)
3
+(cos
2
θ)
3
+3sin
2
θcos
2
θ
Using, [a
3
+b
3
=(a+b)
3
−3ab(a+b)]
⇒LHS=(sin
2
θ+cos
2
θ)
3
−3sin
2
θcos
2
θ(sin
2
θ+cos
2
θ)
3
+3sin
2
θcos
2
θ
⇒LHS=1−3sin
2
θcos
2
θ+3sin
2
θcos
2
θ=1=RHS
Step-by-step explanation:
Similar questions