sin-63° +sin227°
sec248°-cot242
(tan? (6 + 45°) + cosec(45° – 0)],
then coso equals [ 0º = 0 < 45°)
1
3
Answers
Answer:
Answer Expert Verified
4.0/5
425
nikitasingh79
Genius
15.5K answers
34.9M people helped
(cosec²63°+ tan² 24°/ cot²66° +sec²27°) + (sin²63°+ cos63° sin27° + sin27ºsec63° /2(Cosec ²65° - tan²65°- tan²25°)
= (cosec²63°+ tan² 24°/ tan²(90°-66) +cosec²(90°- 27°) + (sin²63°+ cos63° cos(90°-27°) + sin27ºcosec(90°- 63°) /2(Cosec ²65° - cot²(90°-25°)
[ tan (90-A)= cot A, Cosec (90-A)= secA, cot (90-A= tanA]
= (cosec²63°+ tan² 24°/ tan²24° +cosec²63°) + (sin²63°+ cos²63° + sin27ºcosec27° /2(Cosec ²65° - cot²65°)
= (cosec²63°+ tan² 24°/ tan²24° +cosec²63°) + (sin²63°+ cos²63° + sin27º×1/sin27° /2(Cosec ²65° - cot²65°)
[sin²A+cos²A=1, cosecA= 1/sinA,cosec²- cot²A=1]
= 1+ {( 1+1)/2×1}
= 1+2/2= 1+ 1= 2
Hope this will help you...
plz mark as brainliast answer✔✔✔✔✔✔✔✔✔✔✔✔
thnks my answers also❤❤❤❤❤
Step-by-step explanation: