Math, asked by girishyogeshwar94, 1 year ago

Sin^6x+cos^6x+ksin^22x=1 than k=?

Answers

Answered by Swarup1998
3

Given: sin^{6}x+cos^{6}x+k\:sin^{2}2x=1

To find: the value of k

Solution:

Now, sin^{6}x+cos^{6}x+k\:sin^{2}2x=1

\Rightarrow (sin^{2}x)^{3}+(cos^{2}x)^{3}+k\:sin^{2}2x=1

\Rightarrow (sin^{2}x+cos^{2}x)(sin^{4}x+cos^{4}x-sin^{2}x\:cos^{2}x)+k\:sin^{2}2x=1

  • using the identity:
  • a^{3}+b^{3}=(a+b)(a^{2}+b^{2}-ab)

\Rightarrow (sin^{2}x)^{2}+(cos^{2}x)^{2}-sin^{2}x\:cos^{2}x+k\:sin^{2}2x=1

\Rightarrow (sin^{2}x+cos^{2}x)^{2}-2\:sin^{2}x\:cos^{2}x-sin^{2}x\:cos^{2}x+k\:sin^{2}2x=1

  • since sin^{2}x+cos^{2}x=1
  • and a^{2}+b^{2}=(a+b)^{2}-2ab

\Rightarrow 1-3\:sin^{2}x\:cos^{2}x+k\:sin^{2}2x=1

\Rightarrow -3\:sin^{2}x\:cos^{2}x+k\:(2\:sinx\:cosx)^{2}=1

  • since sin2x=2\:sinx\:cosx

\Rightarrow -3\:sin^{2}x\:cos^{2}x+4k^{2}\:sin^{2}x\:cos^{2}x=0

  • since (a.b.c....)^{p}=a^{p}.b^{p}.c^{p}....

\Rightarrow -3+4k=0

  • since sinx\:cosx\neq 0

\Rightarrow 4k=3

\Rightarrow k=\frac{3}{4}

Answer: the value of k is \frac{3}{4}

Similar questions