Sin^8x - cos^8x = (sin^2 - cos^2x)(1-2sin^2xcos^2x)
Answers
Here use the formula,
LHS is
Answer:
Here use the formula, a2−b2=(a+b)(a−b),a4+b4=(a2+b2)−2a2b2a^2-b^2=(a+b)(a-b), a^4+b^4=(a^2+b^2)-2a^2b^2a
2
−b
2
=(a+b)(a−b),a
4
+b
4
=(a
2
+b
2
)−2a
2
b
2
LHS is sin8x−cos8x=(sin4x−cos4x)(sin4x+cos4x)sin8x−cos8x=(sin2x+cos2x)(sin2x−cos2x)[(sin2x+cos2x)2−2sin2xcos2x]sin8x−cos8x=(1)(sin2x−cos2x)[(1)2−2sin2xcos2x]sin8x−cos8x=(sin2x−cos2x)(1−2sin2xcos2x)=RHS\begin{lgathered}\sin^8 x- \cos ^8 x=(\sin^4 x- \cos ^4 x)(\sin^4 x+ \cos ^4 x)\\ \sin^8 x- \cos ^8 x=(\sin^2 x+ \cos ^2 x)(\sin^2 x- \cos ^2 x)[(\sin^2 x+ \cos ^2 x)^2-2\sin^2 x \cos ^2 x]\\ \sin^8 x- \cos ^8 x=(1)(\sin^2 x- \cos ^2 x)[(1)^2-2\sin^2 x \cos ^2 x]\\ \sin^8 x- \cos ^8 x=(\sin^2 x- \cos ^2 x)(1-2\sin^2 x \cos ^2 x)\\ =RHS\end{lgathered}
sin
8
x−cos
8
x=(sin
4
x−cos
4
x)(sin
4
x+cos
4
x)
sin
8
x−cos
8
x=(sin
2
x+cos
2
x)(sin
2
x−cos
2
x)[(sin
2
x+cos
2
x)
2
−2sin
2
xcos
2
x]
sin
8
x−cos
8
x=(1)(sin
2
x−cos
2
x)[(1)
2
−2sin
2
xcos
2
x]
sin
8
x−cos
8
x=(sin
2
x−cos
2
x)(1−2sin
2
xcos
2
x)
=RHS