Math, asked by pvsn598, 10 months ago

Sin (90-theta )cos (90-theta) = tan theta / 1 + cot^2 (90 - theta)

Answers

Answered by sandy1816
7

Step-by-step explanation:

LHS

sin(90-θ)cos(90-θ)

=cosθsinθ

RHS

tanθ/1+cot²(90-θ)

=tanθ/1+tan²θ

=tanθ/sec²θ

=sinθ/cosθ × cos²θ

=sinθcosθ

LHS=RHS

Answered by Anonymous
6

\huge{\underline{\underline{\purple{♡Answer→}}}}

 \sin(90 - \theta)  \cos(90 - \theta)  =  \frac{ \tan(\theta) }{1 +  { \cot^{2} (90 -\theta ) }}

LHS

 =  \sin(90 - \theta)  \cos(90 - \theta)

   = \cos(\theta)  \sin(\theta)

RHS

 =   \frac{ \tan(\theta) }{1 +  { \cot^{2} (90 -\theta ) }}

  = \frac{ \tan(\theta) }{1 +  { \tan^{2}(\theta) } }

 =  \frac{tan \: \theta}{ {sec}^{2} \theta}

 =  \frac{sin \: \theta}{cos \: \theta}  \times  {cos}^{2} \theta

 =  \sin(\theta)  \cos(\theta)  \:

__________________________

LHS = RHS

───── ❝ TheEnforceR ❞ ─────

Mark as Brainliest !! ✨✨

Similar questions