Math, asked by trishabh8571, 4 months ago

Sin (90-theta)÷cosec(90-theta)-cot(90-theta)

Answers

Answered by reenakesharwani157
0

Answer:

This is your answer

You have do it

Attachments:
Answered by Anonymous
1

\LARGE\star\mathfrak{\underline{\underline{\red{ᴀɴsᴡᴇʀ: }}}}

 \sf{ \frac{sin(90 -  \theta)}{cosec(90 -  \theta) - cot(90 -  \theta)} } \\

 \underline{  \underline{\sf{formulae : }}} \\  \sf{sin(90 -  \theta) = cos \theta} \\  \sf{ cosec(90 -  \theta) = sec \theta} \\   \sf{cot (90 -  \theta) = tan \theta} \\  \sf{sec \theta =  \frac{1}{cos \theta} } \\  \sf{tan \theta =  \frac{sin \theta}{cos \theta} } \\  \sf{sin {}^{2} \theta + cos {}^{2} \theta = 1 } \\  \sf{a {}^{2}   -  b {}^{2} =  (a + b)(a - b)}

  \underline{\underline{ \sf{solution : }}} \\   \sf{ \frac{sin(90 -  \theta)}{cosec(90 -  \theta) - cot(90 -  \theta)} } \\ \\   \sf{  = \frac{cos \theta}{sec \theta - tan \theta} } \\ \\   \sf{ =  \frac{cos \theta}{ \frac{1}{cos \theta}  -  \frac{sin \theta}{cos \theta} } } \\   \\  \sf{ =   \frac{cos  \theta}{ \frac{1 - sin \theta}{cos \theta} } } \\  \\  \sf{ =  \frac{cos {}^{2} \theta }{1 - sin \theta} } \\  \\  \sf{ \frac{(1 - sin {}^{2} \theta)}{1 - sin \theta}  } \\  \\  \sf{ =  \frac{(1 - sin \theta)(1 + sin \theta)}{(1 - sin \theta)} } \\  \\  \sf{ =  \frac{ \cancel{(1 - sin \theta)}(1 + sin \theta)}{ \cancel{(1 - sin \theta)}} } \\  \\  \sf{ \bold{ =   \underline{ \underline{(1 + sin \theta)}}}}

Similar questions