Math, asked by roshini1774, 11 months ago

Sin a/1+ cos a=cosec a - cot a

Answers

Answered by Sharad001
16

Question :-

Prove that :

 \implies\boxed{\sf{  \frac{ \sin a}{1 + \cos a} =  \cosec a -  \cot a }}\\

Used Identity :-

 \star \:  \boxed{  \frac{  \cos \theta}{ \sin \theta}  =  \cot \theta \: } \\  \\  \star \:  \boxed{ \frac{1}{ \sin \theta}  =  \cosec \theta} \\  \\  \star \:  \boxed{ 1 -  { \cos}^{2}  \theta =  { \sin}^{2}  \theta}

Explanation :-

Take LHS ( left hand side )

 \to \sf{ \frac{ \sin a}{1 + \cos a} \: } \\  \\ \sf{  rationalise \: by \: 1 -  \cos a} \\  \\  \to \sf{ \frac{ \sin a}{1 + \cos a} \times  \frac{1 -  \cos a}{1 -  \cos a} } \\  \\ \to \sf{ \frac{ \sin a(1 -  \cos a)}{(1 -  \cos a)(1 +  \cos a)} } \\  \:  \\  \because \boxed{ \bf{ (x - y)(x + y) =  {x}^{2}  -  {y}^{2} }} \\  \\  \to \sf{ \frac{ \sin a(1 -  \cos a)}{1 -  { \cos}^{2}a } } \\  \\  \to \sf{ \frac{ \sin a(1 -  \cos a)}{ { \sin}^{2}a } } \\

\to \sf{ \frac{1 -  \cos a}{ \sin a} } \:  \\  \\  \to \sf{ \frac{1}{ \sin a} -  \frac{ \cos a}{ \sin a}  } \:  \\  \\  \to \boxed{ \sf{ \cosec a -  \cot a}}

°•° LHS = RHS

Hence proved .

Similar questions