Math, asked by harshita342, 3 months ago

sin A / 1 + cos A
= cosec A - cot A

Answers

Answered by BrainlyPopularman
13

TO PROVE :

 \\ \implies \bf \dfrac{\sin(A)}{1+ \cos(A)}=cosec(A)-\cot(A)\\

SOLUTION :

• Let's take L.H.S. –

 \\ \:  \:  =  \:  \:  \bf \dfrac{\sin(A)}{1+ \cos(A)}\\

• Now rationalization –

 \\ \:  \:  =  \:  \:  \bf \dfrac{\sin(A)}{1+ \cos(A)} \times  \dfrac{1 - \cos(A)}{1 - \cos(A)} \\

 \\ \:  \:  =  \:  \:  \bf \dfrac{ \{\sin(A) \} \{1 - \cos(A)\}}{\{1+ \cos(A) \} \{1 - \cos(A) \}}\\

 \\ \:  \:  =  \:  \:  \bf \dfrac{ \{\sin(A) \} \{1 - \cos(A)\}}{1 - \cos^{2} (A)}\\

 \\ \:  \:  =  \:  \:  \bf \dfrac{ \{\sin(A) \} \{1 - \cos(A)\}}{\sin^{2} (A)}\\

 \\ \:  \:  =  \:  \:  \bf \dfrac{1 - \cos(A)}{\sin(A)}\\

 \\ \:  \:  =  \:  \:  \bf \dfrac{1}{\sin(A)} -  \dfrac{\cos(A)}{\sin(A)} \\

 \\ \:  \:  =  \:  \:  \bf cosec(A)-\cot(A)\\

 \\ \:  \:  =  \:  \:  \bf R.H.S.\\

 \\ \implies \bf Hence \:  \:Proved\\

USED IDENTITY :

 \\ \longrightarrow \bf 1 -  { \cos}^{2}( \theta)  = { \sin}^{2}( \theta)\\

 \\ \longrightarrow \bf \dfrac{1}{\sin( \theta)} = cosec(\theta)\\

 \\ \longrightarrow \bf \dfrac{\cos( \theta)}{\sin( \theta)} = \cot(\theta)\\

Answered by Anonymous
7

{\color{red}{═══}   \: }{ \color{magenta}{═══ } \: }{ \color{aqua}{═══} \: } {\color{lime}{═══} \: }{\color{purple}{═══} \: }{ \color{yellow}{═══}\:}{\color{navy}{═══}\:}\blue{═══}

We have to prove  \rightarrow  \sf\frac{sin(A)}{1 + cos(A)}  = cosec(A) - cot(A)

{ \huge { \underline {\rm{Solution}}}}

 \large \sf L.H.S. = \frac{sin(A)}{1+cos(A)}

Rationalise the denominator:

 \large \sf\rightarrow\frac{sin(A)}{1+cos(A)}×\frac{1-cos(A)}{1-cos(A)}

 \large \sf \rightarrow \:    \frac{ \{ \sin(A)  \}}{ \{ +  \cos(A)  \}}   \frac{ \{1 -  \cos(A) \} }{ \{1 - cos(A) \}}

 \large \sf \rightarrow   \frac{ \{ \sin(A)  \} \{1 -  \cos(A) }{ \{ 1 -  {cos}^{2} (A)\}}

 \large \sf \rightarrow \frac{ \{  \sin(A \{ 1 -  \cos(A) \}) \}}{ { \sin(A) }^{2} }

 \sf \rightarrow \frac{1 -  \cos(A) }{ \sin(A) }  \\  \\  \sf \implies \frac{1}{ \sin(A) }  -   \frac{ \cos(A) }{ \sin(A) }

 \implies \large  \sf cosec(A) -  \cot(A)

  \sf\rightarrow \:R.H.S.

#Hence proved

Identity:

 \rightarrow \sf1 -  { \cos}^{2} (θ) =  { \sin }^{2} (θ)

 \large \rightarrow \sf \frac{1}{ \sin(θ) }  = cosec(θ)

 \implies \sf \frac{cos(θ)}{ \sin(θ) }  =  \cot(θ)

Hope it helps you...

{\color{red}{═══}   \: }{ \color{magenta}{═══ } \: }{ \color{aqua}{═══} \: } {\color{lime}{═══} \: }{\color{purple}{═══} \: }{ \color{yellow}{═══}</strong><strong>}</strong><strong>

Similar questions