Math, asked by akash7328, 9 months ago

sin (A+B) = 1; cos(A-B) = 3​

Answers

Answered by Anonymous
1

Correct Question :-

If sin(A + B) = 1 and cos(A - B) = √3/2 , find the value of A and B.

Answer :-

  • A = 60

  • B = 30

Solution :-

\longrightarrow \sin(a + b)  = 1 \\  \\  \longrightarrow \sin(a + b) = sin \: 90 \: (as \: sin \: 90 = 1) \\  \\ \longrightarrow (a + b) = 90 \\  \\ \longrightarrow b = 90 - a -  -  -  - (i)

\longrightarrow \cos(a - b)  =  \frac{ \sqrt{3} }{2}  \\   \\ \longrightarrow \cos(a - b)  = cos \: 30 \:  \: (as \:  \: cos  \: 30 =  \frac{ \sqrt{3} }{2} ) \\  \\\longrightarrow a - b= 30 \\

Now putting the value of b from equation (i)

\longrightarrow a - b = 30 \\  \\ \longrightarrow a - (90 - a) = 30 \\  \\ \longrightarrow a - 90 + a = 30 \\  \\ \longrightarrow 2a - 90 = 30 \\  \\\longrightarrow 2a = 90 + 30 \\  \\\longrightarrow 2a = 120 \\  \\ \longrightarrow a =  \frac{120}{2}  \\  \\ \longrightarrow a = 60

Now, put the value of a into equation (i)

\longrightarrow b = 90 - a \\  \\\longrightarrow b = 90 - 60 \\  \\ \longrightarrow b = 30

Hence, The value of A and B is 60 and 30.

Similar questions