Math, asked by tabish8, 1 year ago

sin(A-B)=3/5 and sin(A+B)=4/5.Find value of sin 2A?

Answers

Answered by Anonymous1756
12
A+B=Sin^-1 (4/5)
A-B=Sin^-1 (3/5)
adding
2A=Sin^-1 (4/5)+sin^-1 ( 3/5)
simplify
sin2A=1
Answered by harendrachoubay
8

The value of \sin 2A=1

Step-by-step explanation:

We have,

\sin (A-B)=\dfrac{3}{5} and \sin(A+B)=\dfrac{4}{5}

To find, the value of \sin 2A=?

\sin (A-B)=\dfrac{3}{5}

A-B=\sin^{-1}(\dfrac{3}{5})       .....(1)

and \sin(A+B)=\dfrac{4}{5}

A+B=\sin^{-1}(\dfrac{4}{5})       .....(2)

Addind (1) and (2), we get

2A=\sin^{-1}(\dfrac{3}{5})+\sin^{-1}(\dfrac{4}{5})

2A=\sin^[{\dfrac{3}{5} \sqrt{1-\dfrac{16}{25}}+\dfrac{4}{5} \sqrt{1-\dfrac{9}{25}}}]

2A=\sin^[{\dfrac{3}{5} \sqrt{\dfrac{25-16}{25}}+\dfrac{4}{5} \sqrt{\dfrac{25-9}{25}}}]

2A=\sin^[{\dfrac{3}{5}.\dfrac{3}{5} }+\dfrac{4}{5}.\dfrac{4}{5}}]

\sin 2A=\dfrac{9}{255} }+\dfrac{16}{5}}=\dfrac{25}{25}

\sin 2A=1

Thus, the value of \sin 2A=1

Similar questions