Sin(A+B)/cos(A-B)=1-m-1+m
Then prove that
Tan(pie/4-A)tan(pie/4-B)=m
Answers
Answered by
28
sin (A+B) / cos (A-B) = (1-m)/(1+m)
sin(A+B) + m sin(A + B) = cos(A-B) - m cos(A-B)
m(sin A cos B + cos A sin B + cos A cos B + sin A sin B) =
cos A cos B + sin A sin B - sin A cos B - cos A sin B)
(sin A + cos A) (sin B + cos B)m = (sin A - cos A) (sin B - cos B)
m = ((sin A - cos A) / (sin A + cos A)) ((sin B - cos B) / (sin B + cos B))
m = ((tan A - 1) / (1 + tan A)) (tan B - 1) / (1 + tan B))
m = ((1 - tan A) / (1 + tan A)) (1 - tan B) / (1 + tan B))
m = tan (π/4 - A) tan (π/4 - B)
sin(A+B) + m sin(A + B) = cos(A-B) - m cos(A-B)
m(sin A cos B + cos A sin B + cos A cos B + sin A sin B) =
cos A cos B + sin A sin B - sin A cos B - cos A sin B)
(sin A + cos A) (sin B + cos B)m = (sin A - cos A) (sin B - cos B)
m = ((sin A - cos A) / (sin A + cos A)) ((sin B - cos B) / (sin B + cos B))
m = ((tan A - 1) / (1 + tan A)) (tan B - 1) / (1 + tan B))
m = ((1 - tan A) / (1 + tan A)) (1 - tan B) / (1 + tan B))
m = tan (π/4 - A) tan (π/4 - B)
ritika1718:
It’s really helpful
Answered by
1
Step-by-step explanation:
this is the answer for this
Attachments:
Similar questions