Math, asked by RohithRohi, 1 year ago

Sin(a+b)-Sin(a-b)/Cos(a+b)-Cos(a-b)=Tan​

Answers

Answered by mrsonu962
2

Answer:

Formula used -

sin a +sin b = 2sin (a+b)/2 cos(a-b) /2

cos a - cos b = -2sin(a+b)/2 sin(a-b) /2

 \frac{ \sin( \alpha  +  \beta ) -  \sin( \alpha  -  \beta )  }{ \cos( \alpha  +  \beta ) -  \cos( \alpha  -  \beta )  }  \\  = \frac{ 2 \sin(  \frac{ (\alpha  +  \beta ) + ( \alpha  -  \beta )}{2} ) \cos( \frac{( \alpha  +  \beta ) - ( \alpha  -  \beta )}{2} )  }{ - 2 \sin(  \frac{( \alpha  +  \beta )  +  ( \alpha    -  \beta )}{2} )  \sin( \frac{ \alpha +  \beta ) - ( \alpha  -  \beta ) }{2} ) }  \\  =   \frac{\sin( \frac{ \alpha  +  \beta  +  \alpha  -  \beta }{2} )  \cos( \alpha  +  \beta  -  \alpha  +  \beta ) }{  - \sin( \frac{ \alpha  +  \beta  +  \alpha  -  \beta }{2} ) \sin( \frac{ \alpha  +  \beta  -  \alpha   +  \beta }{2} )  }   \\  =  \frac{ \cos( \frac{2 \beta }{2}  ) }{ -  \sin( \frac{2 \beta }{2} ) }  \\  =  -  \cot(  \frac{2 \beta }{2}  )  \\  =   - \cot( \beta )

Answered by Anonymous
31

Answer:-

=> - cot(β)

Further Explanation

Formula used to do this question:-

sin a +sin b = 2sin (a+b)/2 cos(a-b) /2

cos a - cos b </p><p>= -2sin(a+b)/2 sin(a-b) /2

So,

=&gt;\begin{lgathered}\frac{ \sin( \alpha + \beta ) - \sin( \alpha - \beta ) }{ \cos( \alpha + \beta ) - \cos( \alpha - \beta ) } \\ \\=&gt; \frac{ 2 \sin( \frac{ (\alpha + \beta ) + ( \alpha - \beta )}{2} ) \cos( \frac{( \alpha + \beta ) - ( \alpha - \beta )}{2} ) }{ - 2 \sin( \frac{( \alpha + \beta ) + ( \alpha - \beta )}{2} ) \sin( \frac{ \alpha + \beta ) - ( \alpha - \beta ) }{2} ) } \\ \\\frac{\sin( \frac{ \alpha + \beta + \alpha - \beta }{2} ) \cos( \alpha + \beta - \alpha + \beta ) }{ - \sin( \frac{ \alpha + \beta + \alpha - \beta }{2} ) \sin( \frac{ \alpha + \beta - \alpha + \beta }{2} ) } \\\\ =&gt; \frac{ \cos( \frac{2 \beta }{2} ) }{ - \sin( \frac{2 \beta }{2} ) } \\ =&gt; - \cot( \frac{2 \beta }{2} ) \\\\ =&gt; - \cot( \beta )\end{lgathered}

Similar questions