Math, asked by kunjean6349, 1 year ago

sin(A+B)+sin(A-B) / cos(A+B)+cos(A-B) = tanA​

Answers

Answered by nagathegenius
15

Answer:

Step-by-step explanation:

sinacosb+cosasinb+sinacosb-cosasinb/cosacosb-sinasinb

2sinacosb/2cosacosb

tan a

Answered by slicergiza
26

Answer:

Since,

sin(x+y) = sinx × cosy + cosx × siny

sin(x-y) = sinx × cosy - cosx × siny

cos(x+y) = cosx × cosy - sinx × siny

cos(x-y) = cosx × cosy + sinx × siny

We have to prove that,

\frac{\sin(A+B)+\sin(A-B)}{\cos(A+B)+\cos(A-B)} =\tan A​

L.H.S.

=\frac{\sin(A+B)+\sin(A-B)}{\cos(A+B)+\cos(A-B)}

=\frac{\sinA.\cos B+\sin B.\cos A+\sinA.\cos B-\sin B.\cos A}{\cosA.\cos B-\sin A.\sin B+\cosA.\cos B+\sin A.\sin B}

=\frac{2\sin A\cos B}{2\cos A\cos B}

=\frac{\sin A}{\cos A}

=\tan A

= R.H.S

Hence, proved....

Similar questions