Math, asked by mi0523311, 1 month ago

sin(a) cos(a) = (1/2)sin (2a)
prove this identity​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

We know,

By Euler's Form, we have

\rm :\longmapsto\: {e}^{ia} = cosa + i \: sina

So,

\rm :\longmapsto\: {e}^{ib} = cosb + i \: sinb

Also,

\rm :\longmapsto\: {e}^{i(a + b)} = cos(a + b) + i \: sin(a + b) -  -  - (1)

Now,

\rm :\longmapsto\: {e}^{i(a + b)}

can be rewritten as

\rm \:  =  \:  \:  {e}^{ia}  \times  {e}^{ib}

\rm \:  =  \:  \: (cosa + i \: sina) \times (cosb + i \: sinb)

\rm \:  =  \:  \: cosacosb + icosasinb + isinacosb +  {i}^{2}sinasinb

\rm \:  =  \:  \: cosacosb + i(cosasinb + sinacosb)  - sinasinb

\rm \:  =  \:  \: (cosacosb - sinasinb) + i(cosasinb + sinacosb)

From equation (1) and from above we concluded that

\rm :\longmapsto\:cos(a + b) + i \: sin(a + b)

\rm \:  =  \:  \: (cosacosb - sinasinb) + i(cosasinb + sinacosb)

So, on comparing Imaginary parts on both sides, we get

\red{\rm :\longmapsto\:sin(a + b) = sina \: cosb + sinb \: cosa}

On substituting b = a, we get

\red{\rm :\longmapsto\:sin(a + a) = sina \: cosa + sina \: cosa}

\red{\rm :\longmapsto\:sin(2a) = 2 \: sina \: cosa }

 \red{\bf\implies \:sina \: cosa \:  =  \: \dfrac{1}{2} \: sin2a}

Hence, Proved

Similar questions