Math, asked by delhi78, 1 year ago

sin A + cos A = √3 prove that tan A +cotA=1​

Answers

Answered by Anonymous
1

Step-by-step explanation:

SinA + CosA =√3

→(sinA+cosA)^2=3

→sin^2A + cos^2A +2sinA•cosA =3

→1+2sinA•cosA=3

→2sinA•cosA=2

→sinA•cosA=1....(1)

Now , tanA + cotA= sinA/cosA +cosA/sinA

=(cos^2A +sin^2A)/cosA•sinA

=1/cosA•sinA

=1/1....{from (1)}

=1

Similar questions