sin A + cos A = √3 prove that tan A +cotA=1
Answers
Answered by
1
Step-by-step explanation:
SinA + CosA =√3
→(sinA+cosA)^2=3
→sin^2A + cos^2A +2sinA•cosA =3
→1+2sinA•cosA=3
→2sinA•cosA=2
→sinA•cosA=1....(1)
Now , tanA + cotA= sinA/cosA +cosA/sinA
=(cos^2A +sin^2A)/cosA•sinA
=1/cosA•sinA
=1/1....{from (1)}
=1
Similar questions