Math, asked by rifatkhan1038, 6 months ago

(Sin a+cos a)(tan a+cot a)= sec a+ cosec a

Answers

Answered by Asterinn
8

Given:

\bf  (sin \: a + cos \: a)(tan \: a + cot \: a) = sec \: a + cosec \: a

To prove :

  • RHS = LHS

Proof :

Let's take LHS :-

  \sf  \implies(sin \: a + cos \: a)(tan \: a + cot \: a)

We know that :-

 \underline{ \boxed{ \bf  \large \: tan \: x = \dfrac{sin \: x }{cos \: x}}}

\underline{ \boxed{ \bf  \large \:co t \: x = \dfrac{cos\: x }{sin \: x}}}

\sf  \implies(sin \: a + cos \: a) \bigg( \dfrac{sin \: a }{cos \: a}  + \dfrac{ cos\: a }{ sin\: a} \bigg)

\sf  \implies(sin \: a + cos \: a) \bigg( \dfrac{ {sin}^{2}  a+   {cos}^{2}a  }{ cos\: a \: sin\: a}   \bigg)

We know that :-

\underline{ \boxed{ \bf  \large {sin}^{2}  x+   {cos}^{2}x = 1}}

\sf  \implies(sin \: a + cos \: a) \bigg( \dfrac{ 1  }{ cos\: a \: sin\: a}   \bigg)

\sf  \implies \bigg( \dfrac{ sin \: a}{ cos\: a \: sin\: a}   \bigg) + \bigg( \dfrac{ cos\: a}{ cos\: a \: sin\: a}   \bigg)

\sf  \implies \bigg( \dfrac{  \cancel {sin \: a}}{ cos\: a \: \: \cancel {sin \: a} }   \bigg) + \bigg( \dfrac{  \cancel {cos\: a}}{ \cancel {cos\: a} \: \: sin\: a}   \bigg)

\sf  \implies \bigg( \dfrac{1}{ cos\: a  }   \bigg) + \bigg( \dfrac{  1}{  sin\: a}   \bigg)

We know that :-

 \underline{ \boxed{ \bf  \large \dfrac{1 }{cos \: x} = sec \: x} } \\ \underline{ \boxed{ \bf  \large \dfrac{1 }{sin \: x} = cosec \: x} }

\sf  \implies sec \: a + cosec \: a

Therefore LHS = RHS

hence proved

Answered by mariumsiddiq98
1

Step-by-step explanation:

Taking L.H.S!!

(sin a + cos a)(tan a + cot a)

sin a(tan a + cot a) + cos a(tan a + cot a)

★ Formula:-

» cot ø = cos ø ÷ sin ø

» tan ø = sin ø ÷ cos ø

 \sin a  ( \frac{  \sin \: a  }{ \cos \: a }  +   \frac{ \cos \: a }{ \sin \: a} ) +  \cos \: a( \frac{ \sin \: a}{ \cos \: a}  +  \frac{ \cos \: a }{ \sin \: a } )

sin \: a (  \frac{  {sin}^{2} a +  { \cos }^{2}  a}{ \sin \: a  \: .\cos \: a } ) +cos \: a (  \frac{  {sin}^{2} a +  { \cos }^{2}  a}{ \sin \: a  \: .\cos \: a } )

Formula:-

» sin² ø + cos ² ø = 1

sin \: a (  \frac{1}{ \sin \: a  \: .\cos \: a } ) \:  cos \: a (  \frac{1}{ \sin \: a  \: .\cos \: a } )

sin \: a( \frac{1}{sin \: a} ).sin \: a( \frac{1}{cos \: a} ) + cos \: a( \frac{1}{sin \: a} ).cos \: a( \frac{1}{cos \: a} ) +

1.( \frac{sin \: a}{cos \: a} ) + ( \frac{cos \: a}{sin \: a} ) .1

( \frac{  {sin}^{2}  a +  {cos}^{2} a}{cos \: a.sin \: a} )

( \frac{ 1}{cos \: a.sin \: a} )

( \frac{1}{cos \: a} ).( \frac{1}{sin \: a} )

Formula:-

» 1 ÷ cos ø = sec ø

» 1 ÷ sin ø = cosec ø

sec \: a \: cosec \: a

Hence Proved!!

L.H.S = R.H.S

hope you understand

please mark as brain list!!

Similar questions