( sin A + cosec A) ^2 + (cos A + sec A) ^2 = 7 + tan^2A + cot^2A
Answers
Answered by
6
Hey friend here is your answer
sin2A + 2sinAcosecA + cosec2A + cos2A + 2 cosAsecA + Sec2A
1 + 2 + 2 + cosec2A + sec2A
5 + 2 + tan2A + cot2A
7 + tan2A + cot2A
Hope it helps you.
sin2A + 2sinAcosecA + cosec2A + cos2A + 2 cosAsecA + Sec2A
1 + 2 + 2 + cosec2A + sec2A
5 + 2 + tan2A + cot2A
7 + tan2A + cot2A
Hope it helps you.
vvalor:
hey shall we chat here
Answered by
49
Heya !
☆ here is your answer ☆
( Sin A + cosec A)^2 + ( cos A + sec A)^2 = 7+ +tan^2 A + Cot^2A
=》sin^2A + 2 (SinA)(cosecA) + cosec^2A + cos^2A+ 2 ( cosA)(sec A) + Sec^2A
= 》 sin^2A + cos^2A + cosec^2A + sec^2A+
2 ( SinA ) ( cosecA ) + 2 (cosA ) ( sec A )
=》1 + 1 +cot^2 A + 1 + tan^2 A + 2 (SinA) (1/sinA)
+ 2 ( cosA ) ( 1/cosA)
= 》 7+tan^2A + cot^2A
Hence proved.
Hope this helps you ^_^
☆ here is your answer ☆
( Sin A + cosec A)^2 + ( cos A + sec A)^2 = 7+ +tan^2 A + Cot^2A
=》sin^2A + 2 (SinA)(cosecA) + cosec^2A + cos^2A+ 2 ( cosA)(sec A) + Sec^2A
= 》 sin^2A + cos^2A + cosec^2A + sec^2A+
2 ( SinA ) ( cosecA ) + 2 (cosA ) ( sec A )
=》1 + 1 +cot^2 A + 1 + tan^2 A + 2 (SinA) (1/sinA)
+ 2 ( cosA ) ( 1/cosA)
= 》 7+tan^2A + cot^2A
Hence proved.
Hope this helps you ^_^
Similar questions