Math, asked by ranaprataprai90, 11 months ago

(Sin A+ sec A)^2+( cos A+ cosec A)^2= (1+sec A× cosec A)^2

Answers

Answered by Anonymous
11

{\boxed{(sinA+secA)^{2}+(cosA+cosecA)^{2}}}

= sin²A + 2sinA × secA + sec²A + cos²A + 2cosAcosecA + cosec²A

\boxed{Arrange\:in\:Sequence}

= (sin²A + cos²A) + sec²A + cosec²A + 2tanA + 2cotA

\boxed{Identity:sin^{2}A+cos^{2}A =1}

= \tt{\rightarrow 1+sec^{2}A + cosec^{2}A + 2[ \dfrac{sinA}{cosA}+\dfrac{cosA}{sinA}]}

= 1 + sec²A + cosec²A + 2×secAcosecA

\tt\boxed{{Identity:sec^{2}A+cosec^{2}A=sec^{2}A\times cosec^{2}A}}

= (1 + secA × cosecA)²

\textsc{Hence we get LHS = RHS}

______________________________________________________

★Some additional identities :-

\tt{\rightarrow tan\theta =\dfrac{sin\theta}{cos\theta}}

\tt{\rightarrow cot\theta =\dfrac{cos\theta}{sin\theta}}

★(sin²θ) + (cos² θ) = 1

★1 + tan² θ = sec² θ

★1 + cot² θ = cosec² θ

Similar questions