Math, asked by dashtarulata350, 5 months ago

sin (B-C) / sin B. sin C + sin (C-A) / sin C. sin A + sin (A-B) / sin A. sin B = 0​

Answers

Answered by biswasmrinmay2004
3

Answer:

proved

Step-by-step explanation:

please make me brainliest

.......

Attachments:
Answered by ravi2303kumar
3

Step-by-step explanation:

\frac{sin(B-C)}{sinB.sinC}  +  \frac{sin(C-A)}{sinC.sinA}  +  \frac{sin(A-B)}{sinA.sinB}

= \frac{sinB.cosC - cosB.sinC}{sinB.sinC} + \frac{sinC.cosA - cosC.sinA}{sinC. sinA} + \frac{sinA.cosB - cosA.sinB}{sinA. sinB}

= \frac{sinB.cosC}{sinB.sinC} - \frac{cosB.sinC}{sinB.sinC} + \frac{sinC.cosA}{sinC. sinA} - \frac{cosC.sinA}{sinC. sinA} + \frac{sinA.cosB}{sinA. sinB} - \frac{cosA.sinB}{sinA. sinB}

= \frac{cosC}{sinC} - \frac{cosB}{sinB} + \frac{cosA}{sinA} - \frac{cosC}{sinC} + \frac{cosB}{sinB} - \frac{cosA}{sinA}

= cotC - cotB + cotA - cotC + cotB - cotA

= 0

=> \frac{sin(B-C)}{sinB.sinC}  +  \frac{sin(C-A)}{sinC.sinA}  +  \frac{sin(A-B)}{sinA.sinB}\frac{sin(B-C)}{sinB.sinC}  = 0

Hence proved

Similar questions