Math, asked by mujjumohammed803, 4 months ago

The zeroes of the polynomial p(x) = x² +x-6 are
(a) 2,3
(b)-23
(c) 2.-3
(d) -2,-3​

Answers

Answered by Anonymous
24

\huge \underline { \bf { \red S \green O \pink L \blue U \orange T \purple I  \red O \pink N \green{...}}}

By splitting middle term :

:\implies \sf {x}^{2}  + x - 6 = 0 \\  \\ :\implies \sf {x}^{2} +  3x - 2x - 6 = 0 \\  \\:\implies \sf x(x + 3)  - 2(x +  3)  = 0\\  \\:\implies \sf (x - 2)(x + 3) = 0 \\  \\:\implies \sf x - 2 = 0 \:  \:  , \:  \: x  + 3 = 0 \\  \\:\implies  \boxed{\bf x = 2 }\:  \: , \:  \: \boxed{ \bf x =  - 3}

  \therefore \underline{ \bf \blue{2 , -3  \: are  \: the \:  zeroes  \: of  \: the  \: polynomial}} \\

Answered by ItzDαrkHσrsє
29

Given:

  • \sf{Polynomial \: p(x) =  {x}^{2}  + x - 6}

To Find:

  • Zeroes of the polynomial = ?

Solution:

First of all let's convert the given polynomial equation into a quadratic equation form:

 \\ \longrightarrow\rm{ {x}^{2}  + x - 6} \\  \\ \longrightarrow\rm{ {x }^{2}  + x - 6 = 0}

We can do find the zeroes of the polynomial within two methods:

  • Splitting middle term method.

  • Factorization method.

Let us do it according by splitting the middle term of the polynomial:

  \\ \longrightarrow\bf{ {x}^{2}  + x -  6= 0} \\  \\ \longrightarrow\bf{ {x}^{2}  + 3x - 2x - 6 = 0 \: .... \: (Splitting \: middle \: terms)} \\  \\ \longrightarrow\bf{x(x + 3) - 2(x + 3) = 0}  \\  \\ \longrightarrow\bf{(x - 2)(x + 3) = 0 \: .... \: (Collecting \: like \: terms)} \\  \\ \longrightarrow\bf{x - 2 = 0 \: or \: x + 3 = 0} \\  \\ \longrightarrow\bf{x = 0 + 2 \: , \: x = 0 - 3} \\  \\ \longrightarrow\bf{x = 2 \: , \: x =  - 3}

Thus,

\therefore The zeroes of polynomial are 2 & -3.

Similar questions