Math, asked by CVSriram25, 8 months ago

(sinθ - cosθ +1)/(sinθ + cosθ -1) = ?

Answers

Answered by arvindhan14
1

Answer:

0

Step-by-step explanation:

(Sinx - Cosx +1)(Sinx + Cosx -1)

(Sinx - Cosx +1)( 1 - 1)

= 0

Answered by Anonymous
9

Answer:

  \frac{ \sin(a) -  \cos(a) + 1  }{ \sin(a) +  \cos(a) - 1  } \\  =  \frac{2 \sin( \frac{a}{2} ) \cos( \frac{a}{2} ) - (1 - 2 \sin {}^{2} ( \frac{a}{2} )) + 1   }{2 \sin( \frac{a}{2} ) \cos( \frac{a}{2} ) + 1 - 2 \sin {}^{2} ( \frac{a}{2} ) - 1   }   \\  =  \frac{2 \sin( \frac{a}{2} ) \cos( \frac{a}{2} ) + 2 \sin {}^{2} ( \frac{a}{2} )   }{2 \sin( \frac{a}{2} ) \cos( \frac{a}{2} ) - 2 \sin {}^{2} ( \frac{a}{2} )   }  \\  =  \frac{ \cos( \frac{a}{2} ) +  \sin( \frac{a}{2} )  }{ \cos( \frac{a}{2} ) -  \sin( \frac{a}{2} )  }

Hope it's helpful

Similar questions