sin⍬+ cos⍬=√2 cos(90°-⍬),show that cot⍬= √2 − 1
Answers
Answered by
5
Required Answer:-
Given:
- sin θ + cos θ = √2 cos(90° - θ)
To Prove:
- cot θ = √2 - 1.
Proof:
Given,
➡ sin θ + cos θ = √2 cos(90° - θ)
➡ sin θ + cos θ = √2 sin θ (As cos(90° - θ) = sin θ)
➡ cos θ = √2 sin θ - sin θ
➡ cos θ = sin θ(√2 - 1)
➡ cos θ/sin θ = √2 - 1
➡ 1/tan θ = √2 - 1 (tan θ = sin θ/cos θ)
➡ cot θ = √2 - 1 (cot θ = 1/tan θ)
Hence Proved.
Formula Used:
- cos(90° - θ) = sin θ
- sin θ/cos θ = tan θ
- tan θ = 1/cot θ
Answered by
2
Given:-
- sin θ + cos θ = √2 cos(90° - θ)
To Prove:-
- cot θ = √2 - 1.
Proof:-
Given,
➡ sin θ + cos θ = √2 cos(90° - θ)
➡ sin θ + cos θ = √2 sin θ (As cos(90° - θ) = sin θ)
➡ cos θ = √2 sin θ - sin θ
➡ cos θ = sin θ(√2 - 1)
➡ cos θ/sin θ = √2 - 1
➡ 1/tan θ = √2 - 1 (tan θ = sin θ/cos θ)
➡ cot θ = √2 - 1 (cot θ = 1/tan θ)
Hence Proved.
Formula Used:
- cos(90° - θ) = sin θ
- sin θ/cos θ = tan θ
- tan θ = 1/cot θ
Similar questions
Math,
1 month ago
Math,
1 month ago
Social Sciences,
1 month ago
Math,
3 months ago
Hindi,
9 months ago
Computer Science,
9 months ago
Environmental Sciences,
9 months ago