sinθ×cosθ is equal to what?
Answers
Answered by
4
Answer:
Step-by-step explanation:
Sinθ+Cosθ=√2
Or, (Sinθ+Cosθ)²=(√2)² [ By square both sides]
Or, Sin² + Cos² + 2 Sinθ Cosθ = 2
Or, 1+ 2 Sinθ. Cosθ = 2 [ as, Sin² + Cos² = 1]
Or, 2 Sinθ Cosθ = 2—1
Or, Sin 2θ = 1 [as, Sin 2θ = 2 Sinθ Cosθ ]
Or, Sin 2θ = Sin 90° [ as the value of Sin 90°= 1]
Or, 2θ = 90° [ Dividing Sin from both sides ]
Or, θ = 90°÷ 2 = 45°
So the value of θ is 45°.
Answered by
2
Answer:
Sinθ+Cosθ=√2
Or, (Sinθ+Cosθ)²=(√2)² [ By square both sides]
Or, Sin² + Cos² + 2 Sinθ Cosθ = 2
Or, 1+ 2 Sinθ. Cosθ = 2 [ as, Sin² + Cos² = 1]
Or, 2 Sinθ Cosθ = 2—1
Or, Sin 2θ = 1 [as, Sin 2θ = 2 Sinθ Cosθ ]
Or, Sin 2θ = Sin 90° [ as the value of Sin 90°= 1]
Or, 2θ = 90° [ Dividing Sin from both sides ]
Or, θ = 90°÷ 2 = 45°
So the value of θ is 45°
Similar questions