Math, asked by momumomali8882, 1 year ago

Sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p 2 – 1) = 2p.

Answers

Answered by shanujindal48p68s3s
4

 \sin( \alpha )  +  \cos( \alpha )  = x \\  \sec( \alpha )  +  \csc( \alpha )  = y \\  \frac{ \sin( \alpha )  +  \cos( \alpha ) }{ \sin( \alpha ) \cos( \alpha )  }  = y \\  \sin( \alpha )  \cos( \alpha )  =  \frac{x}{y}
Now consider this
 \sin( \alpha )  +  \cos( \alpha )  = x \\  \  \sin {}^{2}  \alpha  +  { \cos }^{2}  \alpha  + 2 \sin( \alpha )  \cos( \alpha )  =  {x}^{2}  \\ 2 \sin( \alpha )  \cos( \alpha )  =  {x }^{2}  - 1 \\  \sin( \alpha )  \cos( \alpha )  =  \frac{ {x}^{2} - 1 }{2}
Now substitute this in the previous equation to get
 \frac{x}{y}  =  \sin( \alpha )  \cos( \alpha )  \\  \frac{x}{y}  =  \frac{ {x}^{2}  - 1}{2}  \\ 2x = y( {x}^{2}  - 1) \\ or \\ 2p = q( {p}^{2}  - 1)
Similar questions