sin cube theta + cos cube theta upon sin theta + cos theta + sin theta cos theta = 1
Answers
Answered by
2
Let theta = @
(sin^3@+cos^3@)/(sin@+cos@+sin@cos@)=1
Transposing
(sin@+cos@)(sin^2@+cos^2@-sin@cos@)=(sin@+cos@+sin@cos@)
=> (sin@+cos@)(1-sin@cos@)=(sin@+cos@+sin@cos@)
=> sin@+cos@-(sin@+cos@)sin@cos@=sin@+cos@+sin@cos@
Cancelling like terms and transposing to RHS
=> 0 = (sin@cos@)(1+sin@+cos@)
So either sin@=0, cos @=0 or sin@+cos@= -1
Similar questions