Math, asked by vanshumeshdavey, 10 months ago

Sin inverse -1 by 2 + 2 Cos inverse root -3 by 2​

Answers

Answered by MaheswariS
4

\textbf{Given:}

\mathsf{sin^{-1}\left(\dfrac{-1}{2}\right)+2\,cos^{-1}\left(-\dfrac{\sqrt{3}}{2}\right)}

\textbf{To find:}

\textsf{The value of}

\mathsf{sin^{-1}\left(\dfrac{-1}{2}\right)+2\,cos^{-1}\left(-\dfrac{\sqrt{3}}{2}\right)}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{sin^{-1}\left(\dfrac{-1}{2}\right)+2\,cos^{-1}\left(-\dfrac{\sqrt{3}}{2}\right)}

\mathsf{Using}

\boxed{\begin{minipage}{4cm}$\\\bf\,1.sin^{-1}(-x)=-\,sin^{-1}x\\\\2.cos^{-1}x=\pi-cos^{-1}x\\$\end{minipage}}

\mathsf{=-sin^{-1}\left(\dfrac{1}{2}\right)+2\left(\pi-cos^{-1}\left(\dfrac{\sqrt{3}}{2}\right)\right)}

\mathsf{Using}

\boxed{\begin{minipage}{3cm}$\\\bf\,1.sin\dfrac{\pi}{6}=\dfrac{1}{2}\\\\2.cos\dfrac{\pi}{6}=\dfrac{\sqrt3}{2}\\$\end{minipage}}

\mathsf{=-\dfrac{\pi}{6}+2\left(\pi-\dfrac{\pi}{6}\right)\right)}

\mathsf{=-\dfrac{\pi}{6}+2\,\pi-\dfrac{2\pi}{6}}

\mathsf{=2\,\pi-\dfrac{3\pi}{6}}

\mathsf{=2\,\pi-\dfrac{\pi}{2}}

\mathsf{=\dfrac{3\,\pi}{2}}

\implies\boxed{\mathsf{sin^{-1}\left(\dfrac{-1}{2}\right)+2\,cos^{-1}\left(-\dfrac{\sqrt{3}}{2}\right)=\dfrac{3\,\pi}{2}}}

\textbf{Find more:}

Similar questions