Math, asked by jessie18011, 1 year ago

Sin inverse x under root 1 minus x minus root x under root 1 - x square

Answers

Answered by CarliReifsteck
1

Given that,

y=\sin^{-1}(x\sqrt{1-x}+\sqrt{x}\sqrt{1-x^2})

Suppose, \dfrac{dy}{dx}=\dfrac{1}{2\sqrt{x(1-x)}}+p

Let x= sin θ[/tex]

Then, \cos\theta=\sqrt{1-x^2}

Let,\sqrt{x}=\sin\phi

Then, \cos\phi=\sqrt{1-x}

We need to calculate the value of p

Using given equation

y=\sin^{-1}(x\sqrt{1-x}+\sqrt{x}\sqrt{1-x^2})

Put the value in the equation

y=\sin^{-1}(\sin\theta\cos\phi+\sin\phi\cos\theta)

y=\sin^{-1}\sin(\theta+\phi)

y=\theta+\phi

y=\sin^{-1}x+\sin^{-1}\sqrt{x}

On differentiating

\dfrac{dy}{dx}=\dfrac{1}{\sqrt{1-x^2}}+\dfrac{1}{\sqrt{1-x}}\times\dfrac{1}{2\sqrt{x}}

\dfrac{dy}{dx}=\dfrac{1}{\sqrt{1-x^2}}+\dfrac{1}{2\sqrt{x(1-x)}}

Now comparing the equation with given equation

\dfrac{dy}{dx}=p+\dfrac{1}{2\sqrt{x}(1-x)}

So, the value of p will be

p= \dfrac{1}{\sqrt{1-x^2}}

Hence, The value of p is  \dfrac{1}{\sqrt{1-x^2}}.

Similar questions