sin (n + 1)x sin (n + 2)x+cos (n + 1)x cos (n + 2)r = cos x
Answers
Answered by
3
L.H.S.=
sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x
=cos((n+2)x−(n−1)x){∵cos(A−B)=sinAsinB+cosAcosB}
⇒=cos((n+2−n−1)x)
⇒=cosx=R.H.S.
Hence proved.
Similar questions