Sin(n+1)x.sin(n+2)x + cos(n-1)x.cos(n+2)x=cosx
...
plz do this sum
class 11 maths
Answers
Answered by
160
HELLO DEAR,
cos(n+1)xcos(n+2)x + sin(n+1)xsin(n+2)x
it is from the identity
cos(a-b) = cosa * cosb + sina * sinb
here a= (n+1)x b= (n+2)x
so,
cos((n+1)x-(n+2)x)
cos(nx+x-nx-2x)
cos(-x)
cosx { since cos(-x) = cosx }
I HOPE ITS HELP YOU DEAR,
THANKS
cos(n+1)xcos(n+2)x + sin(n+1)xsin(n+2)x
it is from the identity
cos(a-b) = cosa * cosb + sina * sinb
here a= (n+1)x b= (n+2)x
so,
cos((n+1)x-(n+2)x)
cos(nx+x-nx-2x)
cos(-x)
cosx { since cos(-x) = cosx }
I HOPE ITS HELP YOU DEAR,
THANKS
Anonymous:
thanks
Answered by
11
Answer:
Answer:
Step-by-step explanation:
Given,
=> sin(n+1)x.sin(n+2)x + cos(n+1)x.cos(n+2)x
Before starting let,
=> a = (n+1)x
=> b = (n+2)x
We know that,
=> cos(a-b) = sin(a).sin(b) + cos(b).cos(a)
=> sin(n+1)x.sin(n+2)x + cos(n+1)x.cos(n+2)x
=> cos((n+1)x - (n+2)x)
=> cos(-x)
=> cos(x)
Hence Proved
Similar questions