Math, asked by shubham66680, 1 year ago

sin of power 4 + cos of power 4 = 1+ 4k × sin sqare theeta × cos sqare theeta . then k is equal to .

Answers

Answered by Anonymous
0

Given \:  \:  \: Question \:  \: Is \:  \:  \\  \\  \sin {}^{4} (x)  +  \cos {}^{4} (x)  = 1 + 4k \sin {}^{2} (x)  \cos {}^{2} (x)  \\  \\ Answer \:  \:  \\  \\ ( \sin {}^{2} (x) ) {}^{2}  + ( \cos {}^{2} (x) ) {}^{2}  = 1 + 4k \sin {}^{2} (x)  \cos {}^{2} (x)  \\  \\ ( \sin {}^{2} (x)  +  \cos {}^{2} (x) ) {}^{2}  - 2 \sin {}^{2} (x)  \cos {}^{2} (x)  \\  = 1 + 4k \sin {}^{2} (x)  \cos {}^{2} (x)  \\  \\ 1 - 2 \sin {}^{2} (x)  \cos {}^{2} (x)  = 1 + 4k \sin {}^{2} (x)  \cos {}^{2} (x)  \\  \\  - 2 \sin {}^{2} (x)  \cos {}^{2} (x)  = 4k \sin {}^{2} (x)  \cos {}^{2} (x)  \\  \\ 4k \:  =  \frac{ - 2 \sin {}^{2} (x)  \cos {}^{2} (x) }{ \sin {}^{2} (x) \cos {}^{2} (x)  }  \\  \\ 4k =  - 2 \\  \\ k =  \frac{ - 2}{4}  \\  \\ k =  \frac{ - 1}{2}  \\  \\ Note \:  \\  \\ 1) \:  \:  \:  \alpha  {}^{4}  +  \beta  {}^{4}  = ( \alpha  {}^{2}  +  \beta  {}^{2} ) {}^{2}  - 2( \alpha  \beta ) {}^{2}  \\  \\ 2) \:  \:  \:  \sin {}^{2} (x)  +  \cos {}^{2} (x)  = 1

Answered by parisbeauty
0

hope it helps u ..........

Attachments:
Similar questions