Sin(pie/4+x).Sin(pie/4-x)=1/2cos x
❌❌❌No Spam ans ❌❌❌
✏✏✏Want full solution
Answers
Answered by
0
→π/4=(π/4×180/π)° = 45°
→sin(45°+x).sin(45°-x)
→[sin45°cosx+cos45°sinx][sin45°cosx-cos45°sinx]
→[1/√2cosx +1/√2sinx].[1/√2cosx-1/√2sinx]
→1/√2[cosx+sinx].1/√2[cosx-sinx]
→1/2 [cos²x-sin²x]
→1/2 [cos²x+sin²x - 2sin²x]
→1/2 × [1-2sin²x]
(¡ : cos²x = 1-2sin²x)
→1/2 cos²x
[In question, instead of ½cos x, there must be ½cos²x]
Answered by
0
Solution !!
↪π/4=(π/4×180/π)° = 45°
↪sin(45°+x).sin(45°-x)
↪[sin45°cosx+cos45°sinx][sin45°cosx-cos45°sinx]
↪[1/√2cosx +1/√2sinx].[1/√2cosx-1/√2sinx]
↪1/√2[cosx+sinx].1/√2[cosx-sinx]
↪1/2 [cos²x-sin²x]
↪1/2 [cos²x+sin²x - 2sin²x]
↪1/2 × [1-2sin²x]
↪1/2 cos²x
Similar questions