(sinθ–secθ)2+(cosθ–cosecθ)² = (1–secθ . cosecθ)²,Prove it by using trigonometric identities.
Answers
Answered by
5
HELLO DEAR,
L.H.S.
= (sinθ + secθ)² + (cosθ + cosecθ)²
= sin²θ + 2sinθsecθ + sec²θ + cos²θ + 2cosθcosecθ + cosec²θ
=sin²θ + cos²θ + 2(sinθsecθ + cosθcosecθ) + sec²θ + cosec²θ
= 1 + 2(sinθ/cosθ + cosθ/sinθ) + (1/cos²θ + 1/sin²θ)
= 1 + 2(sin²θ + cos²θ)/sinθcosθ + (sin²θ + cos²θ)/sin²θcos²θ
= 1 + 2/sinθcosθ + 1/sin²θcos²θ
= 1 + 2secθcosecθ + sec²θcosec²θ
Now, R.H.S.
= ( 1 + secθcosecθ)²
= 1² + 2×1×(secθcosecθ) + (secθcosecθ)²
= 1 + 2secθcosecθ + sec²θcosec²θ
∴ L.H.S.= R.H.S.
I HOPE ITS HELP YOU DEAR,
THANKS
Answered by
4
Hi ,
Here I am using 'A' instead of theta
*******************************************
1 ) sinA = 1/cosecA
2 ) cosA = 1/secA
3 ) sin²A + cos² A = 1
**********************************************
LHS = ( sinA - SecA )² + ( cosA - cosecA )²
= ( 1/cosecA - secA )² + ( 1/secA - cosecA )²
= [(1-secAcosecA)/cosecA]²+[(1-secAcosecA)/secA]²
=( 1-secAcosecA)²[1/cosec²A + 1/sec²A ]
= ( 1 - secAcosecA )² [ sin²A + cos²A ]
= ( 1 - secAcosecA )²
= RHS
I hope this helps you.
: )
Here I am using 'A' instead of theta
*******************************************
1 ) sinA = 1/cosecA
2 ) cosA = 1/secA
3 ) sin²A + cos² A = 1
**********************************************
LHS = ( sinA - SecA )² + ( cosA - cosecA )²
= ( 1/cosecA - secA )² + ( 1/secA - cosecA )²
= [(1-secAcosecA)/cosecA]²+[(1-secAcosecA)/secA]²
=( 1-secAcosecA)²[1/cosec²A + 1/sec²A ]
= ( 1 - secAcosecA )² [ sin²A + cos²A ]
= ( 1 - secAcosecA )²
= RHS
I hope this helps you.
: )
Similar questions