Math, asked by rao77019894, 1 month ago

sin α−sin(1200−α)+sin(1200+α)=​

Answers

Answered by xxsamxx0786
4

Answer:

sinxsin(120

sinxsin(120 0

sinxsin(120 0 −x)sin(120

sinxsin(120 0 −x)sin(120 0

sinxsin(120 0 −x)sin(120 0 +x)

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx(

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 4

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43 −sin

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43 −sin 2

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43 −sin 2 x)

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43 −sin 2 x)=

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43 −sin 2 x)= 4

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43 −sin 2 x)= 41

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43 −sin 2 x)= 41

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43 −sin 2 x)= 41 sin3x

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43 −sin 2 x)= 41 sin3xFundamental period of sinax is

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43 −sin 2 x)= 41 sin3xFundamental period of sinax is a

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43 −sin 2 x)= 41 sin3xFundamental period of sinax is a2π

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43 −sin 2 x)= 41 sin3xFundamental period of sinax is a2π

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43 −sin 2 x)= 41 sin3xFundamental period of sinax is a2π

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43 −sin 2 x)= 41 sin3xFundamental period of sinax is a2π So, period of

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43 −sin 2 x)= 41 sin3xFundamental period of sinax is a2π So, period of 4

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43 −sin 2 x)= 41 sin3xFundamental period of sinax is a2π So, period of 41

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43 −sin 2 x)= 41 sin3xFundamental period of sinax is a2π So, period of 41

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43 −sin 2 x)= 41 sin3xFundamental period of sinax is a2π So, period of 41 sin3x is

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43 −sin 2 x)= 41 sin3xFundamental period of sinax is a2π So, period of 41 sin3x is 3

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43 −sin 2 x)= 41 sin3xFundamental period of sinax is a2π So, period of 41 sin3x is 32π

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43 −sin 2 x)= 41 sin3xFundamental period of sinax is a2π So, period of 41 sin3x is 32π

sinxsin(120 0 −x)sin(120 0 +x) =sinx[sin 2 120 0 −sin 2 x]=sinx( 43 −sin 2 x)= 41 sin3xFundamental period of sinax is a2π So, period of 41 sin3x is 32π

hope it's helpful

❤️sam❤️

Similar questions