Math, asked by shwetap, 1 year ago

sin square 63+ sin square 27 upon cos square 17+cos square 73

Answers

Answered by TUHINSUBHRA
1
sin square 63+ sin square 27 upon cos square 17+cos square 73
=(sin square 63+ sin square 27) ÷{cos square (90-63)+cos square (90-27)}
=(sin square 63+ sin square 27) ÷(sin square 63+ sin square 27)
=1
Answered by ItzFrozenFlames
8

\huge\color{red}{\underline{\underline {Question}}}

\:  \frac{ {sin}^{2}63 +  {sin}^{2} 27 }{ {cos}^{2}17 +  {cos}^{2}73  }

\huge\color{red}{\underline{\underline {Answer}}}

We  \: know,  \\ ☞ \:  {sin}^{2}  θ = {cos}^{2}  (90 -  θ) \\ ☞ \:  {cos}^{2}  θ =  {sin}^{2} (90 -  θ) \\  \\ So,  \:  \frac{ {sin}^{2}63 +  {sin}^{2} 27 }{ {cos}^{2}17 +  {cos}^{2}73  }  \\  \\  ⟹ \: \frac{ {sin}^{2}(90 - 27)  +  {sin}^{2} 27}{ {cos}^{2}(90 - 73) +  {cos}^{2}73 }  \\  \\   As,  \:  {cos}^{2} A +  {sin}^{2} A = 1 \\  \\⟹ \:  \frac{ {cos}^{2}27 +  {sin}^{2}  27}{ {sin}^{2}73 +  {cos}^{2} 73 }  \\ \\ ⟹ \:  \frac{1}{1}  \\ ⟹ \: 1

So, final answer is 1.

Similar questions