Sin square A+cos square B=1 then find the value of cos square A+ square B
Answers
Answered by
1
value of cos²A + sin²B = 1
explanation : your question is -> sin²A + cos²B = 1 then find value of cos²A + sin²B = ?
we know from trigonometric identities,
sin²θ + cos²θ = 1
so, sin²A + cos²A = 1
⇒sin²A = 1 - cos²A .......(1)
similarly, sin²B + cos²B = 1
⇒cos²B = 1 - sin²B ..........(1)
now given, sin²A + cos²B = 1
putting equations (1) and (2),
(1 - cos²A) + (1 - sin²B) = 1
⇒ 1 - cos²A + 1 - sin²B = 1
⇒2 - (cos²A + sin²B) = 1
⇒1 = cos²A + sin²B
hence, cos²A + sin²B = 1
also read similar questions : prove that tan²A-tan²B=sin²A-sin²B/cos²A.cos²B
https://brainly.in/question/2383466
Cos²A-sin²A= tan B. Prove that cos²B-sin²B=tan²A
https://brainly.in/question/12014598
Similar questions