Math, asked by hima51, 3 months ago

sin tetha/1+cos tetha is equal to
(A) cos tetha/1-sin tetha
(B) 1 - cos theta/sin theta (C) 1 - sin theta/cos tetha (D) 1 - cos theta/1-cos tetha​

Answers

Answered by Anonymous
81

Answer:

\huge\mathcal{\green{Bonjour!}}

\huge\mathfrak{\red{Answer}}

\huge\fbox{\purple{B) \ 1 \ - \ cos \ x/ sin x }}

Step-by-step explanation:

Question:-

  • sin x/1+cos x is equal to?

To find:-

  • value of sin x/1+cos x

Required Solution:-

By rationalising the denominator we have;

\huge \frac{sin \: x}{1 + cos \: x}  \times  \frac{1 - cos \: x}{1 - cos \: x}

__________________________________________

\huge =  >  \frac{sin \: x(1 - cos \: x)}{1 -  {cos}^{2} x}

__________________________________________

\huge =  >  \frac{sin(1 - cos \: x)}{ {sin}^{2}x }  =  \frac{1 - cos \: x}{sin \: x}

\huge\mathcal{\green{All \ the \ very \ best!}}

\huge\mathfrak{\red{@MissTranquil}}

\huge\fbox{\orange{be \ brainly}}

________________________________________

________________________________________

Note:-

: ➝ Here, theta is taken as 'x'.

Similar questions