Math, asked by mishtikhandekar, 6 hours ago

sin theta = 1/3 find cos^3 theta • cosec theta + tan theta • sec theta​

Answers

Answered by LaeeqAhmed
1

 \sf \sin  \theta =  \frac{1}{3}  =  \frac{opposite(opp)}{hypotenuse(hyp)}

 \sf \purple{by \: pythagors \: theorem : }

 \sf {(hyp)}^{2}  =  {(opp)}^{2}  +  {(adjacent)}^{2}

 \implies  \sf {(3)}^{2}  =  {(1)}^{2}  +  {(adjacent)}^{2}

 \implies   \sf {(adj)}^{2}  = 9 - 1

 \implies   \sf {(adj)}^{2}  = 8

 \therefore   \sf adj  = 2 \sqrt{2}

 \implies  \sf\cos \theta =  \frac{adj}{hyp}  =  \frac{2 \sqrt{2} }{3}

 \implies  \sf\cosec \theta =  \frac{hyp}{opp}  =  3

 \implies  \sf \tan \theta =  \frac{opp}{adj}  =   \frac{1}{2 \sqrt{2} }

 \implies  \sf\sec \theta =  \frac{hyp}{adj}  =   \frac{3}{2 \sqrt{2} }

 \cos ^{3} \theta. \cosec\theta + \tan\theta.\sec\theta

 \implies [ { (\frac{2 \sqrt{2} }{3} })^{3}  \times 3 ]+ [ \frac{2 \sqrt{2} }{3} \times  \frac{3}{2 \sqrt{2} }  ]

 \implies [  \frac{16 \sqrt{2} }{9}  ]+ [ 1 ]

 \orange{ \therefore  \frac{9  + 16 \sqrt{2} }{9}  }

HOPE IT HELPS!

Similar questions