Math, asked by tambetanish04, 1 month ago

sin theta/(1+cos theta) + (1+cos theta)/sin theta is equal to​

Answers

Answered by ravi2303kumar
1

Answer:

2cosecθ

Step-by-step explanation:

\frac{sin\theta}{1+cos\theta} + \frac{1+cos\theta}{sin\theta}

= \frac{sin^2\theta+(1+cos\theta)^2}{sin\theta(1+cos\theta)}

= \frac{sin^2\theta+(1+2cos\theta+cos^2\theta)}{sin\theta(1+cos\theta)}

= \frac{sin^2\theta+cos^2\theta+1+2cos\theta}{sin\theta(1+cos\theta)}

= \frac{1+1+2cos\theta}{sin\theta(1+cos\theta)}

= \frac{2+2cos\theta}{sin\theta(1+cos\theta)}

= \frac{2(1+cos\theta)}{sin\theta(1+cos\theta)}

= 2*\frac{1}{sin\theta}

= 2cosecθ

Similar questions